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There is considered the plane problem of elasticity theory concerning the
equilibrium of an elastic half-plane consisting of two materials with a recti-
linear edge crack located at the interface of these materials and emerging
into the load free boundary of the half-plane. The problem mentioned re-
duces to a Riemann boundary value problem for two pairs of functions, Under
the condition that the sum of the tripled compression modulus and the shear
modulus is identical for both materials, a solution is given by an exact ana-
lytical method and the stress intensity factors at the vertex of the crack are
calculated,

Let us consider an elastic half-plane « >0

composed of two materials: for y >0 with
the subscript 1 and for ¥ << O  with the sub-
script 2, AtY =0, z <1 on the boundary
between the media there is a crack at whose ed-

)

W — ges a given normal load Oy = —0, Ty = 0
z is applied (see Fig. 1), The half-plane boundary
2 z=0 is load free. The stresses vanish at
infinity .

Let us write the equilibrium equations, the
strain compatibility condition, and the boundary
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Fig,1 conditions in the polar coordinates r0
ds, g (1)

r——+ 55 +0r—0e=0

dsg 07,9

7ot T2 =0, A6 0 =0

8 =0, [ogl =I[16 =0 (2)

0= +n/2, og=1=0

0=0 0<r<1, g = — 0, Tpg=20 (3)

9=O, 7'>1, [ue]=[u,-]=0

r—oo, og—>0, 79—>0 o =0 (4)
( Op O, Tro are stresses and  ug, u, are displacements),

From physical considerations, the stresses will be bounded as r » ( and will
behaveas 1 /r2as r —oo.
Applying the Mellin transform with the complex parameter p [1]to (1) and sat-
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isfying the boundary conditions (2), we arrive at the following expression for the trans-
form Gg(p, O

To (p, 0) =A,sin(p+1)0+ 4 sin (p — 1)8 + A, cos (p + (5)
1)6 + A, cos (p — 1)8 : ’ ®

4= {Ar. —2L0<0 (i=1,2,3,4)

A (p) = [— p coszi"ziAli (p) + ( — sin? 2% ) A ¢(p)]
o= 1o~ s 22T

A (p) = = [— (p* -+ cos prsin? ) A% (p) + 47 (p) %
(p* — sin*55) | [sin pre (p — sin* )]

AF(p)=F {[(p —1)(p* — 1) 4 (p +cos pn) (2p cos? &7 +
P = 1)] 4% (p) — 2 (p* — sin* 57) (p + cos p) 4,7 (1)}
[2 (p— 1) sin pr (p — sin? %‘)]"1

(A;*(p) and A,~(p) are unknown functions of p).
Let us introduce the functions (taking the boundary conditions ( 3) into account)

1
() =1 | [ Re— . L
([

oo (r, 0) P dr = oy (p, 0)+’;:*'_—1'

(6)

0=0

Fp)= 4 (1 - 'Vll‘)

U*(p) =

8 He g

V*(0) = [ 1,0(r, O)rPdr = T(p, 0)

( Ei, E5 and V1, V2 are the Young's moduli and Poisson 's ratios),
Eliminating the functions A4,* (p) and A,- (p) in(6) by using Hooke's law,
we arrive at a Wiener — Hopf equation :

¢ (p) = Actg 52 G (p) [9* (p) + C (p)] (1)
6o =& &), g =arlatls(p
=iA‘1tgpz—“[ L (1ipsin-2£’2£)b(p)]
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= k=1 1= _Ei(l )
h=mm—y k=t=% F=gRarw

A=V + 1) (ks —Fr), b(p)=sin? B (p* —sin? )
Cp) =(=527.9), @ () =(@ (p), ¥~ (p)
¢* () = (U* (p), V*(p))

We assume that the elastic constants are connected by the relationship 2k, + 1 = k,.

Physically this corresponds to the assumption that

+4 - the sumn of thrice the compression modulus plus
7 7 the shear modulus is identical for both materials.
) Let us consider a contour consisting of the

imaginary axis, with the exception of a small
symmetric segment around the origin, and a left
. semi-circle of small radius with center at the
N origin (Fig.2) in the plane of the complex vari-
able p . The domain to the left and right of the
contour will be denoted by D* and D-,res-
L pectively. The matrix & (p) in(7) has the
following properties

Fig, 2

G(p)=b(p)|
X =t — k) /(1 + k)

o i+ R e

Let p =it (— oo <<t<Coo) and A (p) be the determinant of the matrix
G (p), then

(s (t) = sh* 2 / (sh2 L t:‘)h)2 )
=g 2

is an even function, lim A (it) =1 as & —o00, and A (p) isan analytic
function positive at the point p = (. Therefore, A(p) %0 for p& L.
Let A, and A, be eigennumbers of the matrix G.
Since lim A (it) =1 for ¢ —d= o0, then

0 (it) = () [1 — 4x* "

1
%A = m [ln ():17\:2)] 'L =0
Since

M, (i) = —s(t) [49(2 %Qtﬂt-)]% , &= -;— In %

then O >> e (if) is an even function, where lim g(it) =0 as ¢ — o oo.
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Therefore
= 1 M —
Hg = m[ln T]lb =0

According to the theorem presentedin [2], we obtain from the properties of the
matrix G (p)

X
o) =g XO=Fo|> 2| ven

Zo

=k [VI=pB@), z,= = [VT—pB )

F (p) = exp [,jug 1tnA(t) dt] = —%% Vs_;_t()?_ —t—it—p

We write (7) as follows:

s X0V @)+ () = KL X ) ¢ ) + M7 (p)

(pesl)
K*(p/2)=T (¥p/2)/r(l/z-?p/2)

K+ (t/2) M*(p), p= Dt
ZmISJ X+(t)C(t) {M"(p), pe D

Using the relationships near the tip of the crack [3] and a theorem of Abelian type
[4], we obtain

U+ (p) ~ V_—L_—, V*()~—17-2-—_1_—; (p — o) 8)
K K
[Gﬂ(r-yo)""m_%—.—_-?)-, Tre(r,o)’VV—z?T_;.-—{j)— (r——»l—}—O)]

Here Ky, Kyr  are stress intensity factors at the crack vertex,
On the basis of ( 8), the solution of the Wiener — Hopf equation has the form

o* (p) = —Ip/ K+(p / 2)I[X* (p)I-*M+* (p) (9)
@~ (p) = —24K-(p / 2)[X- (p)I-*M~ (p)

Let us find the stress intensity factors at the crack vertex. By using residue theory,
we obtain from (9)

Ur(p)~ oV n/2F*(—1)cosq]/V —p ( ) (10)
—_ - p—oo
V¥ (p) ~[—~0V n/2F* (—1)sing] /V —p

10 e 5 10 s
=) Vi = ¥ ) VT
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P — x| 240 ) —enp [ 800

Comparing the asymptotics in ( 10) and(8), we find
Ki= oV nF*(—1)cosq, Ki=— 0o}V nF*(—1)sing (11)

Presented below are the dependences u; = Kj/ o) n and p, = Kyp/
cVn onkfor v, =1/,

k 0.34 0.5 1 2 4 8
W 14171 1.4193  1.1215 1.1185 1.1102 1.0994
100p, 0.6861 0.3383 0 0.4722 1.7693 3.2936

If ky =1, k = 0 (homogeneous medium), the result (k = 1) agrees with
one known [51],

The author is grateful to G, P, Cherepanov and V, D, Kuliev for attention to the
research,
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