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There is considered the plane problem of elasticity theory concerning the 
equilibrium of an elastic half-plane consisting of two materials with a recti- 
linear edge crack located at the interface of these materials and emerging 

into the load free boundary of the half-plane. The problem mentioned re- 

duces to a Piemann boundary value problem for two pairs of functions, Under 

the condition that the sum of the tripled compression modulus and the shear 
modulus is identical for both materials, a solution is given by an exact ana- 
lytical method and the stress intensity factors at the vertex of the crack are 
calculated. 

Let us consider an elastic half-plane z > 0 
composed of two materials: for y > 0 with 
the subscript 1 and for Y < 0 with the sub- 

script 2, At Y = 0 y x ( 1 on the boundary 

between the media there is a crack at whose ed- 

ges a given normal load or, = -o, r3cy = 0 
H 

/ is applied (see Fig. 1). The half-plane boundary 
/ 2 x=0 is load free. The stresses vanish at 
/ 
/ infinity. 
/ / 
3 

Let us write the equilibrium equations, the 
strain compatibility condition, and the boundary 

Fig. 1 conditions in the polar coordinates rt3 

(1) 

0 = 0, [ael = [T,el = 0 
0 = f n I 2, q = T,fJ = 0 

8=0, O<r<l, a~= --(I, ‘tte=O 

O=O, r>l, Iuel =[u,l=O 

( 6, oe, Ge are stresses and na, u, are displacements). 
From physical considerations, the stresses will be bounded as r _t 0 and will 

behave as 1 / r2 as r -+ a, . 
Applying the Mellin transform with the complex parameter p [l] to ( 1) and sat- 
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isfying the boundary conditions ( 2 ) , we arrive at the following expression for the trans- 
form 50 (p, 0): 

ze (p, 0) = A,sin(p+1)e+A,sin(p--)8+A,cos(p+ (5) 
I)@ + A, cos (p - I)9 

Ai = Ai+1 -l 0c0cn’2 Ai-, -n/2 < 0 < 0 (i =1,2, 3, 4) 

AZ*(P) = [- P COST G A,* (P) -I- (p2 - sin2 9) A,’ (p)] x 

[(p - 1) (p - sin2 F)]’ 

As* (p) = + [- (p2 + cos pn sin2 f) AI* (p) -I- AI’ (p) X 

( 
p2 - sin2 C)] [sin pn (p - sin2 y )I -’ 

Ad* (p) = F {[(P - 1) (P” - 1) + (P + cm ~4 (2P COS2 y + 

P~-~)]A*@)-~(P~- sin2 y) (p + cospn) AI’ (p)} x 

[ 2 (p - 1) sin pn (p - sin2 ?)I-’ 

( Al+ (PI and Al- (PI are unknown functions of p): 
Let us introduce the functions (taking the boundary conditions ( 3 ) into account) 

W(p) = E1 
l aug 4 3& 

4 (1 - 9) s[ II ar &O 
rPdr = [ II 4 (1 - vf) ar e=a 

(6) 

0 

v+ (p) = 1 z,, (r, 0) rp dr = Yre (p, 0) 
1 

( El, E2 and Vlt v2 are the Young ‘s moduli and Poisson ‘s ratios ) , 
Eliminating the functions Al+ (p) and A,- (p) in ( 6) by using Hooke’s law, 

we arrive at a Wiener - Hopf equation: 

q(p) = Actgy G @I [cp+ (P) + c WI 

G(p) =I: :--I, g, = A-lk+b(p) 

g*=fA-ltg~[kl+~(l+psinZ~)b@)] 

(7) 
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kl = k-l 
4(1 -vv,) ’ k2 = Sk, k _ El (I + ‘2) 

- Ez(l fV1) 

A = JI (k, + 1) (ka - k,), i(p) = sina F (p” - sin2 y))-’ 

c (PI = (- & 7 0) I cp- (PI = P- kJ>l y- (PN 

‘p+ (P) = v+ WY v+ (P)) 

We assume that the elastic constants are connected by the relationship 2k, + 1 = k2. 

Physically this corresponds to the assumption that 

+A - the sum of thrice the compression modulus plus 

D D the shear modulus is identical for both materials. 

P Let us consider a contour consisting of the 

imaginary axis, with the exception of a small 
symmetric segment around the origin, and a left 

f semi-circle of small radius with center at the 

\a 
* 

origin (Fig. 2) in the plane of the complex vari- 
able p . The domain to the left and right of the 

contour ‘will be denoted by II + and D -, res - 

L pectively. The matrix G (p) in ( 7 ) has the 
following properties 

Fig. 2 

c(P)=b(P)j/; J+2x g$#_;_i poll 

x = (1 - k,) / (1 + k,) 

Let p = it (- co < t < cc) and A (p) be the determinant of the matrix 

G (P), uxn 

o < A (it) = sa (t) [I - 4x2 @ $2zn1’] 

( s (t) = sh2 $- / (sh2 + - t2)) 

is an even function, lim A (it) = 1 as t--too, and A (p) is an analytic 

function positive at the point p = 0. Therefore, A (p) # 0 for p E L. 
Let h, and h, be eigennumbers of the matrix G. 
Since lim A (it) = 1 for t+*cQ, then 

xA = & [In (bh2)J IL = 0 

Since 

AI, a (it) = - S(t) * [4x2 12 ‘“S&:Ls2 (t)]l’* , e = _!j_ In L$ 

then 0 > a (it) ts an even function, where lim e( it) = 0 as t -+ f 00. 
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Therefore 

According to the theorem presented in [ 2 ] t we obtain from the properties of the 
matrix G (P) 

We write ( 7 ) as follows : 

BAK-1 Q/2) x- (P) cp- (PI + &f--(P) = K+ y2) x+ (P) cp+ (P) + fJ!f+ (d 
(P E L) 

Kf(p/2) = r (1 Tp12)F (l/&p/2) 
1 

2% s 
L 

~x+(t)C(t)*= (:‘;;;I 
* 

p&D+ 
peD- 

Using the relationships near the tip of the crack [3 J and a theorem of Abelian type 
[ 4 1, we obtain 

(8) 

Here Kr , Krl are stress intensity factors at the crack vertex. 
On the basis of ( 8 ) , the solution of the Wiener - Hopf equation has the form 

cp+ (PI = -_[p / K+(p / 2)NX+ (p)l-lM’ (p) (9) 

cp- (P) = -2AK-(p / 2)[X- (p)l-1M- (p) 
Let us find the stress intensity factors at the crack vertex. By using residue theory , 

we obtain from (9) 

u+ (PI - lurnF+ (- 1) cos c71 / 1/-p (10) 
(P’W) 

V+ (p) - [ - u vn?F+ (- 1) sin q] / 1/-p 
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F+ (- 1) = exp [hi \ 
L 0 

Comparing the asymptotics in ( 10 ) and ( 8 ) , we find 

Kr = ovZF+(- l)cosq, KII = -afiF+(- 1)sinq (11) 

Presented below are the dependences p1 = KI / CJ V’% and 
(T JG on k for vr = r/s 

p2 = KII I 

Iz 0.34 0.5 1 2 4 8 
PI 1.1171 1.1193 1.1215 1.1185 1.1102 1.0994 
106 IL2 0.6861 0.3383 0 0.4722 1.7693 3.2936 

If ks = 1, k, = 0 (homogeneous medium), the result (k = 1) agrees with 

one known [5]. 

The author is grateful to G . P . Cherepanov and V. D, Kuliev for attention to the 
research. 
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